

A new selective control technology for management of invasive aquatic plants in Canada

Jon Gosselin Technical Development Biologist SePRO, Carmel, Indiana USA

> IVMA of British Columbia Biennial Forum November 2025

ProcellaCOR® (a.i., florpyrauxifen-benzyl)

- 6 years of successful use as USEPA reduced-risk aquatic herbicide and now registered in Canada
- Health Canada PMRA:

'ProcellaCOR FX herbicide will provide provincial authorities and partners a valuable tool and long-term solution to manage invasive aquatic species.'

- High <u>selective</u>, short-exposure (hrs to days) systemic activity on multiple major North American invasive aquatic weeds
- Herbicide classification
 - Mode of action: HRAC Group 4 (Auxin Mimic)
 - · Chemical family: Arylpicolinate

ProcellaCOR® Physical Chemistry and Environmental Profile

Fate

- · Strong and rapid uptake by target aquatic weeds
 - 23X more in plant versus water at 30 min and 75X at 6 hours (Haug et al. 2021)
- Primary mechanism for degradation: Rapid dissipation via photolysis
 - · Also secondary breakdown via hydrolysis and microbial action

Toxicology

- No mammalian toxicity noted (no label limits on swimming, fishing, or water consumption)
- Favorable profile for fish, waterfowl, and other aquatic fauna
- Activity on some non-target plants → label irrigation guidance

Physical Chemistry and Environmental Profile

Health Canada PMRA Conclusions

"When used according to label directions, florpyrauxifen-benzyl and its transformation products do not pose a risk to wild mammals, birds, beneficial invertebrates, earthworms, bees, aquatic invertebrates, fish, amphibians, or algae."

Physical Chemistry and Environmental Profile

Health Canada PMRA Conclusions

"While florpyrauxifen-benzyl and florpyrauxifen acid may pose risks to sensitive non-target terrestrial plants and aquatic vascular plants, the PMRA recognizes that control of invasive species is necessary to help protect habitats for native species."

"When used according to label directions...will have the desired effect of controlling invasive aquatic plant species that pose a risk to sensitive habitats, which will benefit the aquatic plant community."

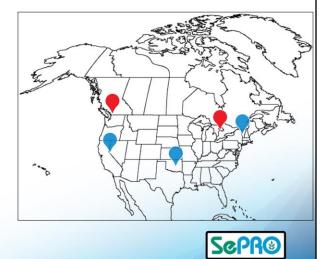
Past published science

- Past collaborative development at all scales
 - Screening of target and non-target aquatic plants (Netherland and Richardson 2016, Richardson et al. 2016, Haug 2018)
 - Aquarium / small tank systems (Richardson et al. 2016, Mudge et al. 2021, Corps Aquatic Plant Control Research Program tech reports)
 - Large mesocosm systems (Beets and Netherland 2018, Beets et al. 2019)
 - Initial field demonstrations (Sperry et al. 2020, Catoor et al. 2022)
 - Specialized aquatic ecotoxicology (Buzcek et al. 2020 mussels, Bisesi et al. (in review) salmon)

Representative Management Outcomes

Tens of thousands of US sites have been successfully managed with ProcellaCOR since 2018.

Field research in 2021-2022 and early operational projects confirm use patterns and target species for ProcellaCOR FX in Canada.


Highlight species

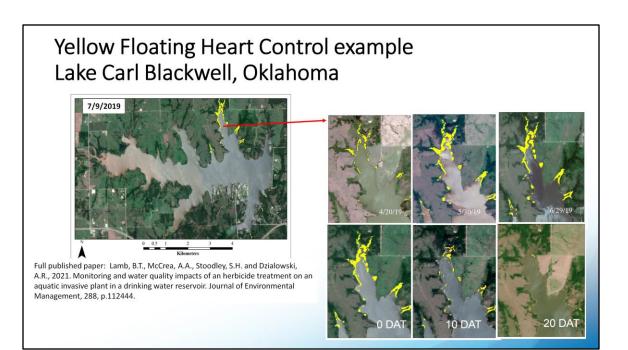
Parrotfeather

Yellow Floating Heart

Eurasian Watermilfoil

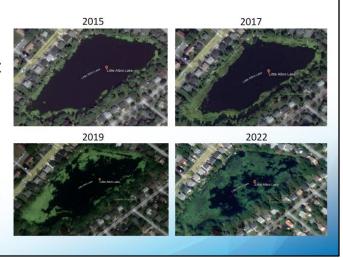
- multiple scales of selective control

2 Days after ProcellaCOR the Parrotfeather on the edge is beginning to lie down.


You can see the continued movement of the ProcellaCOR 11 days later.

43 day after ProcellaCOR and we have some American pondweed coming in where the parrotsfeather was.

10 months after ProcellaCOR the pond remains parrotsfeather free.



Rapid death and decay of YFH throughout the reservoirs

55 acres to less than 5 acres within less than 2 weeks.

Little Albro Lake, Halifax -Yellow Floating Heart Control

- Provincial permit
- Fisheries & Oceans permit
- 1st application in Nova Scotia
- Treatment in 2024
 - full littoral zone
 - · Late-season application
 - Minimal re-growth in 2025 w/ no flowering

Examples of different scales of EWM management with ProcellaCOR

Large-partial up to lake-wide

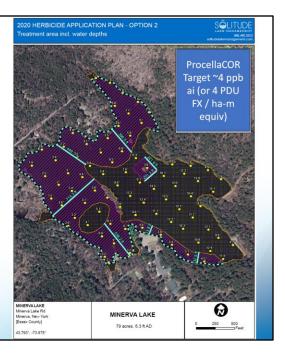
Small-partial

• Silvermere Lake, British Columbia

• Minerva Lake, New York

Spot

• Farlain Lake, Ontario


Minerva Lake NY

- Located in Adirondacks
 - sensitive sites with oversight by the Adirondack Park Agency (APA)
- EWM found in 2007 and managed with aggressive hand harvesting and DASH
 400-500 hours of DASH annually in recent years before treatment
- ProcellaCOR used in 2020 to selectively control EWM at scale and allow more efficient diver removal in future integrated efforts.

Minerva Lake NY

- 17 ha out of 32-ha lake treated June 5, 2020 with ProcellaCOR
 - equivalent of just 3 liters FX formulation
- Lake with 66% littoral FOO of EWM in late summer 2019 survey.
- ProcellaCOR dissipated (<1 ppb ai) by 24 hours post treatment

Summer Prior to Treatment August 30, 2019

	Total	
	Sites	%
Total Sites	82	
Overall Abundance	81	99%
Eurasian Watermilfoil	54	66%
Common Waterweed	49	60%
Flatstem Pondweed	41	50%
Berchtold's Pondweed	36	44%
Southern Naiad	34	41%
Macroalgae	31	38%
Watershield	30	37%
Large-leaf Pondweed	25	30%
Ribbon-leaf Pondweed	15	18%
Northern Naiad	14	17%
Slender Naiad	13	16%
Yellow Waterlily	13	16%
White Waterlily	10	12%
Small Pondweed	7	9%
Alpine Pondweed	4	5%
Sago Pondweed	3	4%
Water Stargrass	3	4%
Creeping Bladderwort	2	2%
Robbin's Pondweed	2	2%
Small Duckweed	2	2%
Greater Duckweed	2	2%
Common Bladderwort	2	2%
Benthic Filamentous Algae	2	2%
Floating-leaf Pondweed	1	1%
Flat-leaf Bladderwort	1	1%
Quillwort	1	1%
Spikerush	1	1%

Frequency of Occurrence 2 months after ProcellaCOR August 6, 2020

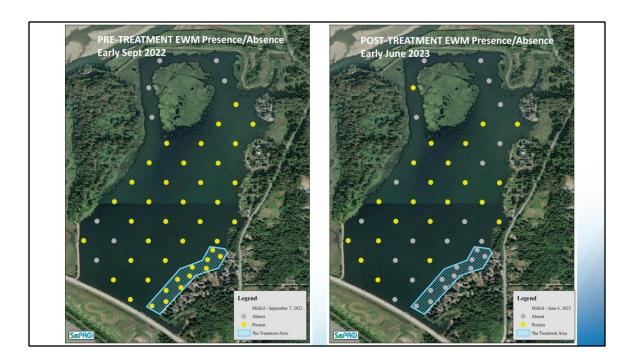
	Total	
	Sites	%
Total Sites	82	
Overall Abundance	82	100%
Common waterweed	52	63%
Southern Naiad	49	60%
Flatstem Pondweed	44	54%
Macroalgae	39	48%
Large-leaf Pondweed	30	37%
Northern Naiad	29	35%
Ribbon-leaf Pondweed	28	34%
Watershield	21	26%
White Waterlily	15	18%
Yellow Waterlily	12	15%
Small Pondweed	10	12%
Slender Naiad	7	9%
Floating-leaf Pondweed	6	7%
Variable Pondweed	3	4%
Sago Pondweed	2	2%
Brittle Naiad	2	2%
Benthic Filamentous Alga	2	2%
Alpine Pondweed	1	1%
Greater Duckweed	1	1%
Quillwort	1	1%
Eurasian Watermilfoil	0	0%
Humped Bladderwort	0	0%
Robbin's Pondweed	0	0%
Greater Duckweed	0	0%
Common Bladderwort	0	0%
Spikerush	0	0%
Water Stargrass	0	0%

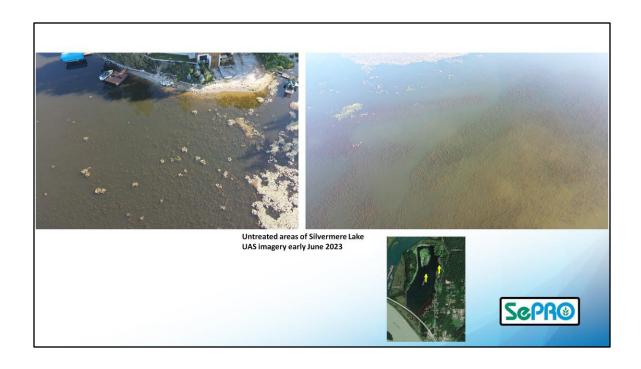
14 months after ProcellaCOR August 11, 2021

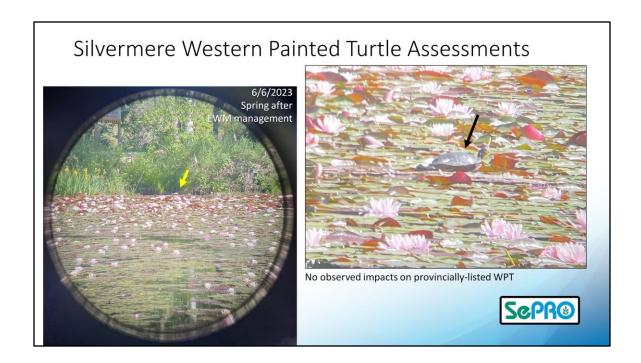
	To	tal
	Sites	%
Total Sites	82	
Overall Abundance	82	100%
Northern naiad	66	80%
Common waterweed	61	74%
Flatstem pondweed	47	57%
Large-leaf pondweed	43	52%
Berchtold's pondweed	26	32%
Ribbon-leaf pondweed	23	28%
Small pondweed	23	28%
Macroalgae	19	23%
White waterlily	17	21%
Watershield	16	20%
Yellow waterlily	13	16%
Southern naiad	8	10%
Sago pondweed	6	7%
Floating-leaf pondweed	5	6%
Brittle naiad	5	6%
Variable-leaf pondweed	3	4%
Sparganium sp.	3	4%
Slender naiad	2	2%
Alpine pondweed	2	2%
Robbins pondweed	1	1%
Giant duckweed	1	1%
Bladderwort sp?	1	1%
Blunt-leaved pondweed?	1	1%
Eurasian watermilfoil	0	0%

Silvermere Lake BC ProcellaCOR research demonstration

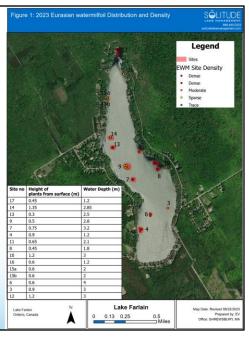
• 5-hectare spot application in late September 2022




- Project on waters not requiring provincial permit along with federal RA, but significant consultation with provincial agencies and Kwantlen First Nations to move forward.
- Application on September 29, 2022
- 5 PDU FX / ha-metre
 - 5 X 15 ha-m water volume = 75 PDU FX
 - 2.5 liters FX utilized to treat 150,000,000 liters of water



Full control in treated area with some reductions just outside.



Farlain Lake, Ontario

- Past EWM control
 - Extensive use of Bottom barriers, Diver-Assisted Suction Harvesting, and spot contact herbicide (diquat Reward)
 - EWM still remained and gradually spread to multiple small infestations.
- September 6, 2023 treatment
 - 15 individual spot applications as small as 500 m²
 - 2.5 hectares total treated at rates of 10 20 PDU FX / hametre on September 6, 2023
- Early EWM collapse reported on September 14.

Farlain Lake September 6, 2023


First application as fully-registered aquatic herbicide in Canada

Farlain Lake Eurasian watermilfoil

Week 1 after ProcellaCOR

Farlain Lake Eurasian watermilfoil Week 3 after ProcellaCOR Site inspection with Farlain Lake Community Association October 4, 2023

Favorable observations of selective Eurasian watermilfoil control

Decaying EWM 1 month post treatment

ProcellaCOR FX A new tool for Canada

 Highly selective management of Eurasian watermilfoil and several other BC invasive aquatic plants to restore infested aquatic ecosystems

- Watch Lake and Pond Heroes case studies
 - https://www.sepro.com/aquatics/lake-pond-heroes
 - Farlain Lake, ON
 https://www.sepro.com/aquatics/lake-pond-heroes/lake-pond-heroes-farlain-lake

Please come visit with us before you leave the Forum.

