

UAV / DRONE CROP SPRAYING

Navigation

This talk will cover key points relating to UAV crop spraying:

- What is the technology?
- Attractiveness of using UAVs for crop spraying
- What regulatory controls exist in Canada for UAV crop spraying
- How to overcome the regulatory hurdles

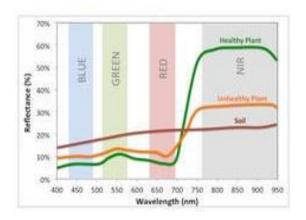
Ground Zero

- PMRA has noted that there are currently no pesticides approved for UAV spraying in Canada.
- Precision Crop Tech has not sprayed pesticides. All flight trials and demonstrations conducted in Canada have sprayed water.
- All Precision Crop Tech pilots have completed aviation ground school or are qualified pilots and have completed specific UAV flight training.
- Key members of the Precision Crop Tech Team are environmental chemists, engineers, remote sensing and GIS specialists, plant nutritionists, agronomists and farmers.

UAV Uses in Crop Production

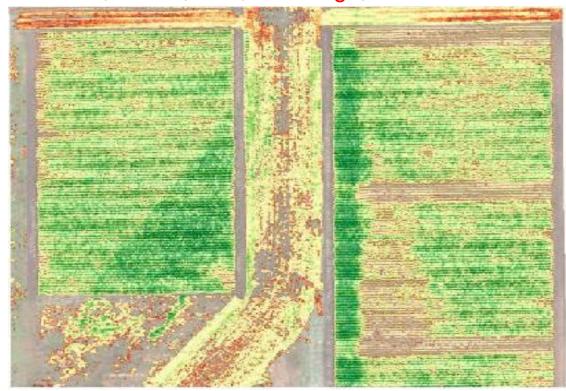
Monitoring

- Disease detection and mitigation
- Parasite and pest monitoring
- Moisture monitoring
- Soil Erosion Monitoring
- Crop growth monitoring
- Livestock tracking
- Disease outbreak tracking
- Remote aerial monitoring
- Yield estimation
- Weed infestation monitoring
- Environmental impact and wildlife habitat monitoring
- Detect weather-related damage


Tracking, sampling and application

- Precision crop spraying
- Reduce herbicide and fertilizer usage
- Crop sampling
- Harvest optimization
- Fertilizer management and application
- Crop inventory tracking
- Asset tracking and management
- Monitor livestock feedlots and pastures
- Estimate yields using biomass calculations
- Locate invasive species and diseased areas
- Survey irrigation and other structural systems

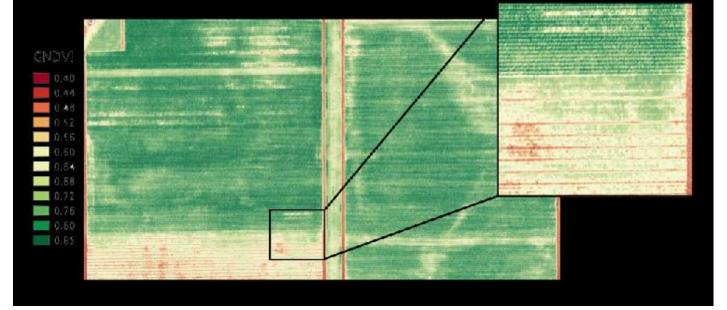
UAV Imaging


RedEdge-M 6

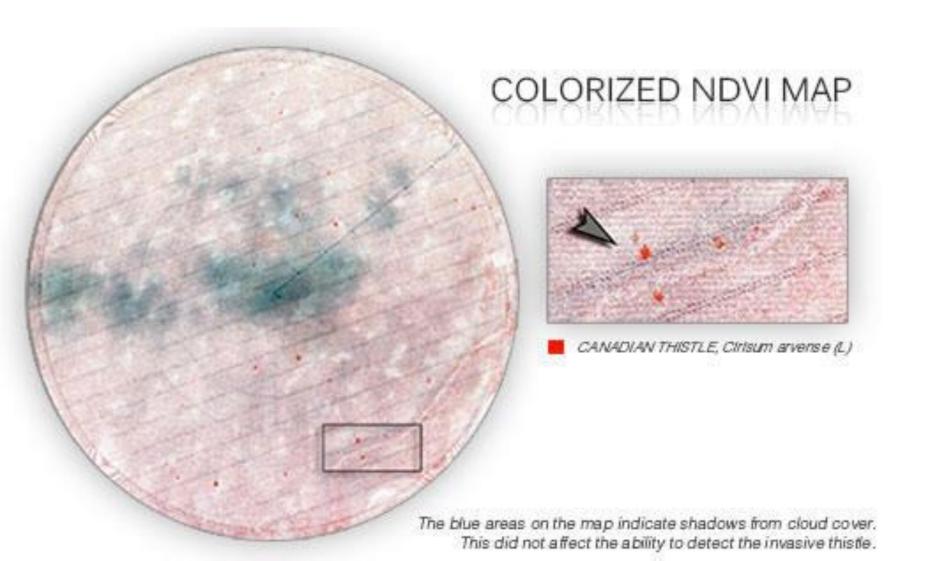
Converted Single Lens Camera

Blue, Green, Red

Multispectral Camera


Blue, Green, Red, Red Edge, Near-Infrared

UAV Imaging


Vineyard (from 400 ft)
NDRE (Red Edge-Based NDVI)

Corn (from 400 ft)
Green-Based NDVI


Invasive Species Detection: Canadian Thistle

A NDVI map helped confirm the presence of a Canadian Thistle infestation on this 122 acre corn field. A flat rate herbicide prescription was applied to the entire field. Aerial imagery inspections confirmed that only 0.6 acres required treatment.

An herbicide reduction of over 99% would have been possible with a variable rate prescription, decreasing the overall environmental impact and yield loss.

49.018746 -122.235797 4

89.6 178

WAYPOINT WAYPOINT

Operational Risks

Aerial crop spraying

- Starts before and ends after the field edge so there is overspray
- Vortices and high speed entrain spray upwards and spray is more prone to evaporation

Hand spraying

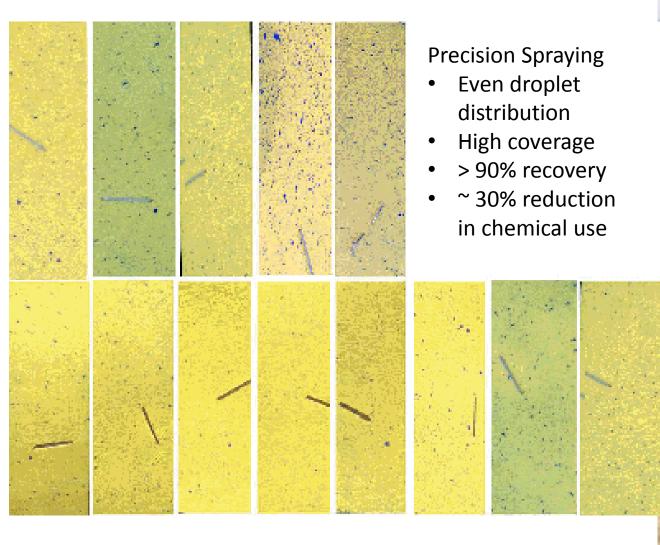
- Operators dangerously exposed
- Inconsistent application
- High cost


Vented orchard spraying

- Operators exposed
- Accelerate spray in fast outward blown moving air stream therefore evaporative loss is high
- Spray upwards to reach the tips of plants so overspray and spray loss

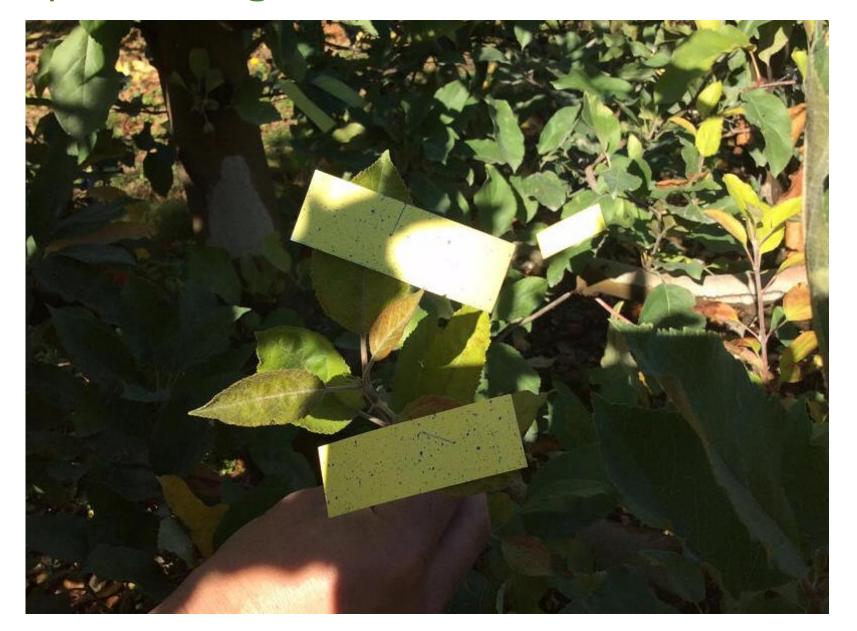
Main Operational Benefits of UAVs

- Quality spray deposition:
 - Three dimensional wetting pattern due to turbulent vortices from up to eight rotors
 - Downward directed spray
 - · Centimetre accuracy in spraying
 - Height control
 - Spray volume control
 - Speed control
 - Less drift than manned aerial application
- Safe and reliable operation
 - Preprogrammed autonomous flight
 - Failsafe systems
- Uses commercially available spray nozzles like Tee Jet
- Early access to water logged fields
- No soil compaction
- No crop damage
- Reduced applicator exposure to chemicals
- Targeted delivery reducing time and chemical costs.



Simulation of the DJI Phantom 3 during flight. Airflow interactions are shown as undulating lines. Pressure changes are shown using color. Areas of high pressure are red; low are blue.

Credits: NASA Ames Research Center/NASA Advanced Supercomputing Division/Tim Sandstrom



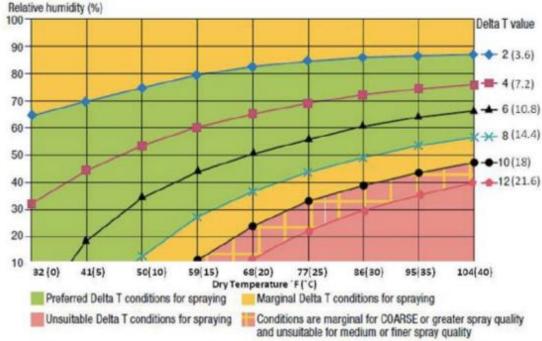
The UAV Litmus Test

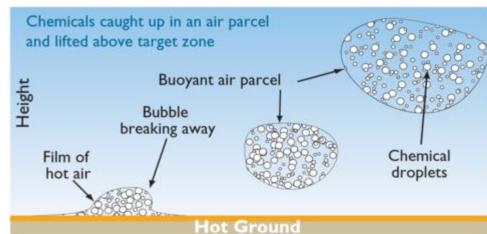
Spray Coverage on the Bottom of Leaves

Uniform Spray Distribution

Meteorology

Stable conditions, most likely overnight. Smoke or dust may initially rise but will spread out at the inversion level and may slowly descend at some distance from the release point.


Unstable conditions, most likely mid-morning to late afternoon. Smoke or dust will rise vertically.



Neutral Conditions, most likely early morning and early evening. Smoke or dust will spread out in an even pattern and fall under gravity, reaching the ground a short distance from the release point.

Optimal spraying conditions

- Neutral stability
- Delta T (2-8 °C (max 10))
- Temperature (5-25°C)
- Wind between 0.5 and 4m/s
- Humidity above 45%
- Morning or evening

Images from Kestrel 5500AG

Washington State Performance and Efficiency Trials

Operating Speed - 3.5 MPH. Coverage rate 1 acre per hour.

- Crop Loss- According to the farm manager, their annual loss is in excess of \$1,000,000 caused by the sprayers knocking the fruit off the plants.
- Best suited to high volume applications –
 higher drip collection on orchard floor. Soil
 build up of pesticide.

VS

Operating Speed - 16-22 mph. Coverage rate 10 to 33 acres/hr

Fully Autonomous Completely automated system

- Crop Loss None = an increase in yields
- No soil compaction
- Quality spray deposition
- Less chemical needed 30% reduction
- Limited collection of droplets on Orchard floor.
- Less drift
- Reduced applicator exposure to chemicals
- Safe and reliable operation
- Efficient and cost effective return on investment (ROI)
- Best suited to low volume applications

Cost Comparison

Cost Summary

Typical operational cost per acre:

UAV Spray \$6 to \$15

Aerial Spray \$7 to \$14

Tractor Spray \$4 to \$15.5

Excludes:

- Labour (highest for tractor spraying)
- Initial capital costs (Lowest for UAV highest for aerial)
- Spray material costs
- Trampling cost (None for UAV and aerial spraying)

Average all in cost for vineyards with 12 year amortization on equipment:

- Tractor Spraying 50/hour
- UAV spraying typically \$25 35/hour (though data is still scarce)

BOTTOM LINE: Fungicide Application on Canola 50 Bus Canola @ \$11.00/Bus

Crop \$ 550.00	Crop \$ 550.00		
By Air \$ 9.00/acre	By Ground \$ 7.50/acre		
Trampling 0%	Trampling 3% \$ 16.50/acre		
Total \$ 9.00/acre	Total \$ 24.00/acre		

Your Bottom Line has Increased \$ 15.00/acre with Aerial Application!

BOTTOM LINE: Insecticide Application on Canola 50 Bus Canola @ \$ 11.00 /Bus

Crop \$ 550.00	Crop \$ 550.00		
By Air \$ 9.00/acre	By Ground \$ 7.50/acre		
Trampling 0%	Trampling 3% \$ 16.50/acre		
Total \$ 9.00/acre	Total \$ 24.00/acre		

Your Bottom Line has Increased \$ 15.00/acre with Aerial Application!

BOTTOM LINE: Preharvest Glyphosate Application on Wheat 50 Bus Wheat @ \$ 6.50/

Crop \$ 325.00	Crop \$ 325.00 By Ground \$ 7.00/acre		
By Air \$ 8.50/acre			
Trampling 0%	Trampling 3% \$ 9.75/acre		
Total \$ 8.50/acre	Total \$ 16.75/acre		

Your Bottom Line has Increased \$ 8.25/acre with Aerial Application!

4.26/Bus

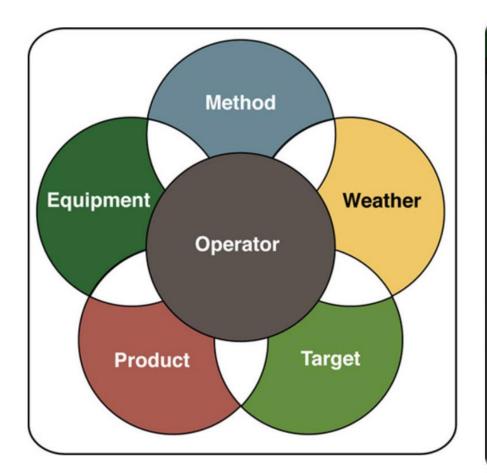
UAV Air Spray cost >

A typical corn farm will produce an additional 20 to 30 bushels per acre when UAV applications are used. With a bushel selling for around \$4.4 (Price of Jun, 2016), in addition, the mist spray at lower attitude will save your fungicide/herbicide usage by up to 50%. A farmer would receive a net benefit of \$88 to \$150 per acre at an application cost of \$6 more. Obviously, This ratio of UAV application cost and profit gain is 1:20.

t 78 Bus Wheat(1.36 ton) @ \$

7/acre 796/acre

Trampling 0%


* Consoler

Total \$ 6.0/acre

http://foxcouleeaviation.com/aerial.htm
https://www.agprofessional.com/article/big-range-custom-application-costs
https://www.slideshare.net/TylerKou1/drone-agriculture-spaying-service

UAV Crop Spraying

Equipment	Method	Weather	Target	Product	Operator
Sprayer Design Air - Assist Orientation Volume Speed Deflectors Spray Quality Pattern Droplet Size Nozzle Orientation	Spray Technique Forward Speed Work Rate Crop- Adapted Spraying Carrier Volume Dose Rate	Wind Speed Direction Temperature Relative Humidity	Canopy Morphology Time of Season Density- Area Target Size Location	Mode of Action Timing Formulation Density Adjuvants	Attitude

Regulators and Industry Groups – A Summary

Health Canada

- PMRA Currently there are no pesticides/herbicides labelled for use with UAVs.
- Manufacturers responsibility to test and then apply for label amendments.

Transport Canada

- Clear regulations.
- Drone pilot training requirement.
- SFOC with recording and reporting requirements.
- Precision Crop Tech currently working on a risk based site assessment tool for spray applications.

Ministry of Environment

- Applicators certificate Currently covers helicopters and planes no UAV specific training/testing.
- Commercial applicators require registration.

Agriculture and Agri-Food Canada

- Precision Crop Tech is on a working group to plan trials to test efficacy and trial key pesticides.
- Flight Demonstrations planned in Ottawa in 2019.
- Flight Demonstrations completed in Abbotsford and Kelowna in 2018.

• Industry Group- Canadian Aerial Applicators Association

- Interested but not convinced of technology or safety.
- Threat to aerial application. UAVs ideal for small farms with precision needs and cannot cost effectively spray large farms.

Supplier Conformance

• HSE based in the USA are the only manufacturer that have so far started working towards the requirements that have been set by the FAA and Transport Canada for type certification, maintenance schedules, flight tracking, dual redundancy navigation and control systems.

Field Services

- Soil Testing
- Plant Tissue Testing
- Field Monitoring Systems
- UAV Crop Imaging
- Data Processing and Interpretation
- UAV Crop Spraying

UAV / Drone

- Full Crop Service
- Sales
- Leasing
- Training
- Maintenance

www.precisioncroptech.com